New mutations in flagellar motors identified by whole genome sequencing in Chlamydomonas

Author:

Lin Huawen,Nauman Nicholas P,Albee Alison J,Hsu Silas,Dutcher Susan K

Abstract

Abstract Background The building of a cilium or flagellum requires molecular motors and associated proteins that allow the relocation of proteins from the cell body to the distal end and the return of proteins to the cell body in a process termed intraflagellar transport (IFT). IFT trains are carried out by kinesin and back to the cell body by dynein. Methods We used whole genome sequencing to identify the causative mutations for two temperature-sensitive flagellar assembly mutants in Chlamydomonas and validated the changes using reversion analysis. We examined the effect of these mutations on the localization of IFT81, an IFT complex B protein, the cytoplasmic dynein heavy chain (DHC1b), and the dynein light intermediate chain (D1bLIC). Results The strains, fla18 and fla24, have mutations in kinesin-2 and cytoplasmic dynein, respectively. The fla18 mutation alters the same glutamic acid (E24G) mutated in the fla10-14 allele (E24K). The fla18 strain loses flagella at 32°C more rapidly than the E24K allele but less rapidly than the fla10-1 allele. The fla18 mutant loses its flagella by detachment rather than by shortening. The fla24 mutation falls in cytoplasmic dynein and changes a completely conserved amino acid (L3243P) in an alpha helix in the AAA5 domain. The fla24 mutant loses its flagella by shortening within 6 hours at 32°C. DHC1b protein is reduced by 18-fold and D1bLIC is reduced by 16-fold at 21°C compared to wild-type cells. We identified two pseudorevertants (L3243S and L3243R), which remain flagellated at 32°C. Although fla24 cells assemble full-length flagella at 21°C, IFT81 protein localization is dramatically altered. Instead of localizing at the basal body and along the flagella, IFT81 is concentrated at the proximal end of the flagella. The pseudorevertants show wild-type IFT81 localization at 21°C, but proximal end localization of IFT81 at 32°C. Conclusions The change in the AAA5 domain of the cytoplasmic dynein in fla24 may block the recycling of IFT trains after retrograde transport. It is clear that different alleles in the flagellar motors reveal different functions and roles. Multiple alleles will be important for understanding structure-function relationships.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3