A comparative study on predicting influenza outbreaks using different feature spaces: application of influenza-like illness data from Early Warning Alert and Response System in Syria

Author:

Darwish Ali,Rahhal Yasser,Jafar Assef

Abstract

Abstract Objective An accurate forecasting of outbreaks of influenza-like illness (ILI) could support public health officials to suggest public health actions earlier. We investigated the performance of three different feature spaces in different models to forecast the weekly ILI rate in Syria using EWARS data from World Health Organization (WHO). Time series feature space was first used and we applied the seven models which are Naïve, Average, Seasonal naïve, drift, dynamic harmonic regression (Dhr), seasonal and trend decomposition using loess (STL) and TBATS. The Second feature space is like some state-of-the-art, which we named $$53-weeks-before\_52-first-order-difference$$53-weeks-before_52-first-order-difference feature space. The third one, we proposed and named $$n-years-before\_m-weeks-around$$n-years-before_m-weeks-around (YnWm) feature space. Machine learning (ML) and deep learning (DL) model were applied to the second and third feature spaces (generalized linear model (GLM), support vector regression (SVR), gradient boosting (GB), random forest (RF) and long short term memory (LSTM)). Results It was indicated that the LSTM model of four layers with $$1-year-before\_4-weeks-around$$1-year-before_4-weeks-around feature space gave more accurate results than other models and reached the lowest MAPE of $$3.52\%$$3.52% and the lowest RMSE of 0.01662. I hope that this modelling methodology can be applied in other countries and therefore help prevent and control influenza worldwide.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference30 articles.

1. World Health Organization. Influenza (Seasonal) Fact Sheet. http://www.emro.who.int/syr/publications-other/ewars-weekly-bulletin-2014.html. Accessed 16 July 2019.

2. World Health Organization Regional Office for the Eastern Mediterranean. Syrian Arab Republic—EWARS: The Early Warning Alert and Response System. http://www.emro.who.int/syr/publications-other/ewars-weekly-bulletin.html. Accessed 16 July 2019.

3. Brooks LC, Farrow DC, Hyun S, Tibshirani RJ, Rosenfeld R. Nonmechanistic forecasts of seasonal influenza with iterative one-week-ahead distributions. PLoS Comput Biol. 2018;14(6):1006134.

4. Kandula S, Yamana T, Pei S, Yang W, Morita H, Shaman J. Evaluation of mechanistic and statistical methods in forecasting influenza-like illness. J R Soc Interface. 2018;15(144):20180174.

5. Unkel S, Farrington CP, Garthwaite PH, Robertson C, Andrews N. Statistical methods for the prospective detection of infectious disease outbreaks: a review. J R Stat Soc Ser A. 2012;175(1):49–82.

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3