Author:
Darwish Ali,Rahhal Yasser,Jafar Assef
Abstract
Abstract
Objective
An accurate forecasting of outbreaks of influenza-like illness (ILI) could support public health officials to suggest public health actions earlier. We investigated the performance of three different feature spaces in different models to forecast the weekly ILI rate in Syria using EWARS data from World Health Organization (WHO). Time series feature space was first used and we applied the seven models which are Naïve, Average, Seasonal naïve, drift, dynamic harmonic regression (Dhr), seasonal and trend decomposition using loess (STL) and TBATS. The Second feature space is like some state-of-the-art, which we named $$53-weeks-before\_52-first-order-difference$$53-weeks-before_52-first-order-difference feature space. The third one, we proposed and named $$n-years-before\_m-weeks-around$$n-years-before_m-weeks-around (YnWm) feature space. Machine learning (ML) and deep learning (DL) model were applied to the second and third feature spaces (generalized linear model (GLM), support vector regression (SVR), gradient boosting (GB), random forest (RF) and long short term memory (LSTM)).
Results
It was indicated that the LSTM model of four layers with $$1-year-before\_4-weeks-around$$1-year-before_4-weeks-around feature space gave more accurate results than other models and reached the lowest MAPE of $$3.52\%$$3.52% and the lowest RMSE of 0.01662. I hope that this modelling methodology can be applied in other countries and therefore help prevent and control influenza worldwide.
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference30 articles.
1. World Health Organization. Influenza (Seasonal) Fact Sheet. http://www.emro.who.int/syr/publications-other/ewars-weekly-bulletin-2014.html. Accessed 16 July 2019.
2. World Health Organization Regional Office for the Eastern Mediterranean. Syrian Arab Republic—EWARS: The Early Warning Alert and Response System. http://www.emro.who.int/syr/publications-other/ewars-weekly-bulletin.html. Accessed 16 July 2019.
3. Brooks LC, Farrow DC, Hyun S, Tibshirani RJ, Rosenfeld R. Nonmechanistic forecasts of seasonal influenza with iterative one-week-ahead distributions. PLoS Comput Biol. 2018;14(6):1006134.
4. Kandula S, Yamana T, Pei S, Yang W, Morita H, Shaman J. Evaluation of mechanistic and statistical methods in forecasting influenza-like illness. J R Soc Interface. 2018;15(144):20180174.
5. Unkel S, Farrington CP, Garthwaite PH, Robertson C, Andrews N. Statistical methods for the prospective detection of infectious disease outbreaks: a review. J R Stat Soc Ser A. 2012;175(1):49–82.
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献