Centriolin interacts with HectD1 in a cell cycle dependent manner

Author:

Salas Jesus,Garcia Alexander,Zora Vancy,Dornbush Sean,Mousa-Ibrahim Fady,Fogg Hanna,Gromley Zeynep,Gromley Adam

Abstract

Abstract Objective The centrosome is universally recognized as the microtubule organizing center of animal cells, but emerging evidence suggests that it has other important functions including primary cilia formation, DNA damage checkpoints, and cell cycle progression. Despite this, the role of individual components of the centrosome remains unclear. Previous studies suggest that one component, centriolin, has an important function in cytokinesis and cell cycle progression, although its exact role in these processes is not known. To determine how centriolin influences the progression through the cell cycle, we sought to identify interacting partners that may be involved in regulating its function. Results This study provides evidence that the ubiquitin E3 ligase HectD1 binds to centriolin and that this association likely accounts for our observation that HectD1 co-localizes with centriolin at the centrosome during mitosis. In addition to its centrosomal localization, we also show that the expression of HectD1 fluctuates throughout the cell cycle, with the highest levels during mitosis, coinciding with a marked reduction in centriolin expression. We propose that the interaction between HectD1 and centriolin may be necessary for normal cell cycle progression and we speculate that this function may involve HectD1-mediated degradation of centriolin.

Funder

Lincoln Memorial University-DeBusk College of Osteopathic Medicine

Butterfly Fund of the East Tennessee Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3