Author:
Zimmer Alexandra J.,Schumacher Samuel G.,Södersten Erik,Mantsoki Anna,Wyss Romain,Persing David H.,Banderby Sara,Strömqvist Meuzelaar Linda,Prieto Jacqueline,Gnanashanmugam Devasena,Khatri Purvesh,Ongarello Stefano,Ruhwald Morten,Denkinger Claudia M.
Abstract
Abstract
Objectives
A novel 3-gene host transcriptional signature (GBP5, DUSP3 and KLF2) has been validated for tuberculosis (TB) treatment monitoring using laboratory-based RNA sequencing platforms. The signature was recently translated by Cepheid into a prototype cartridge-based test that can be run on the GeneXpert instrument. In this study, we prospectively evaluated the change in the expression of the cartridge-based 3-gene signature following treatment initiation among pulmonary TB patients who were microbiologically cured at the end of treatment.
Results
The 3-gene signature expression level (TB score) changed significantly over time with respect to baseline among 31 pulmonary TB patients. The greatest increase in TB score occurred within the first month of treatment (median fold-increase in TB score: 1.08 [IQR 0.54–1.52]) and plateaued after 4 months of treatment (median TB score: 1.97 [IQR: 1.03–2.33]). The rapid and substantial increase of the TB score in the first month of treatment holds promise for the early identification of patients that respond to TB treatment. The plateau in TB score at 4 months may indicate early clearance of disease and could direct treatment to be shortened. These hypotheses need to be further explored with larger prospective treatment monitoring studies.
Funder
Department for International Development
Ministerie van Buitenlandse Zaken
Department of Foreign Affairs and Trade, Australian Government
Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie
Bill and Melinda Gates Foundation
NIH/NIAID
U.S. Department of Defense
Dr. Ralph and Marian Falk Medical Research Trust
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference12 articles.
1. World Health Organization. Global Tuberculosis Report 2020 [Internet]. Geneva, Switzerland; 2020 [cited 2021 Feb 19]. http://apps.who.int/bookorders.
2. Center for Drug Evaluation and Research, Food and Drug Administration. LOI Decision Letter for the Qualification of Lipoarabinomannan as a Pharmacodynamic/response Biomarker [Internet]. 2017 [cited 2021 May 17]. https://fda.report/media/122620/CPATH-TB-Drug-Regimens-LOI-Letter.pdf
3. Kawasaki M, Echiverri C, Raymond L, Cadena E, Reside E, Gler MT, et al. Lipoarabinomannan in sputum to detect bacterial load and treatment response in patients with pulmonary tuberculosis: Analytic validation and evaluation in two cohorts. PLoS Med. 2019. https://doi.org/10.1371/journal.pmed.1002780.
4. Gupta RK, Turner CT, Venturini C, Esmail H, Rangaka MX, Copas A, et al. Concise whole blood transcriptional signatures for incipient tuberculosis: a systematic review and patient-level pooled meta-analysis. Lancet Respir Med [Internet]. 2020 Apr 1 [cited 2021 Feb 22];8(4):395–406. www.thelancet.com/respiratoryVol8
5. Bloom CI, Graham CM, Berry MPR, Wilkinson KA, Oni T, Rozakeas F, et al. Detectable Changes in The Blood Transcriptome Are Present after Two Weeks of Antituberculosis Therapy. PLoS One [Internet]. 2012 Oct 2 [cited 2021 May 4];7(10):e46191. www.plosone.org
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献