Use of electronic health record data mining for heart failure subtyping

Author:

Vuori Matti A.,Kiiskinen Tuomo,Pitkänen Niina,Kurki Samu,Laivuori Hannele,Laitinen Tarja,Mäntylahti Sampo,Palotie Aarno,FinnGen ,Niiranen Teemu J.

Abstract

Abstract Objective To assess whether electronic health record (EHR) data text mining can be used to improve register-based heart failure (HF) subtyping. EHR data of 43,405 individuals from two Finnish hospital biobanks were mined for unstructured text mentions of ejection fraction (EF) and validated against clinical assessment in two sets of 100 randomly selected individuals. Structured laboratory data was then incorporated for a categorization by HF subtype (HF with mildly reduced EF, HFmrEF; HF with preserved EF, HFpEF; HF with reduced EF, HFrEF; and no HF). Results In 86% of the cases, the algorithm-identified EF belonged to the correct HF subtype range. Sensitivity, specificity, PPV and NPV of the algorithm were 94–100% for HFrEF, 85–100% for HFmrEF, and 96%, 67%, 53% and 98% for HFpEF. Survival analyses using the traditional diagnosis of HF were in concordance with the algorithm-based ones. Compared to healthy individuals, mortality increased from HFmrEF (hazard ratio [HR], 1.91; 95% confidence interval [CI], 1.24–2.95) to HFpEF (2.28; 1.80–2.88) to HFrEF group (2.63; 1.97–3.50) over a follow-up of 1.5 years. We conclude that quantitative EF data can be efficiently extracted from EHRs and used with laboratory data to subtype HF with reasonable accuracy, especially for HFrEF.

Funder

University of Helsinki including Helsinki University Central Hospital

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference12 articles.

1. Janssens SP. Gene therapy for heart failure. Hear Fail Second Ed. 2012;457–73.

2. Ponikowski P, Voors A, Anker AD, Bueno S, Cleland HGF, Coats JJS. 2016 ESC GUIDELINES FOR THE DIAGNOSIS AND TREATMENT OF ACUTE AND CHRONIC HEART FAILURE. Russ J Cardiol. 2017;18(1):7–81.

3. Povl Munk-Jørgensen Aksel Bertelsen AADKLELKT. Implementation of ICD-10 in the nordic countries. Nord J Psychiatry. 1999;53(1):5–9.

4. WHO. International Classification of Diseases 10th Revision [Internet]. [cited 2019 Sep 9]. Available from: http://apps.who.int/classifications/icd10/browse/2016/en (2018.

5. FinnGen. FinnGen Documentation of R4 release [Internet]. 2020. Available from: https://finngen.gitbook.io/documentation/

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3