Author:
Kakasi Balázs,Gácsi Eszter,Jankovics Hajnalka,Vonderviszt Ferenc
Abstract
Abstract
Objective
The green fluorescent protein (GFP) and its derivatives are widely used in biomedical research. The manipulation of GFP-tagged proteins by GFP-specific binders, e.g. single-domain antibodies (nanobodies), is of increasing significance. It is therefore important to better understand the properties of antiGFP-GFP interaction in order to establish methodological applications. In this work the interaction of superfolder GFP (sfGFP) and its enhancer nanobody (aGFPenh) was characterized further.
Results
Previous calorimetric experiments demonstrated that the aGFPenh nanobody binds strongly to sfGFP with a nanomolar affinity. Here we show that this interaction results in a substantial structural stabilization of aGFPenh reflected in a significant increase of its melting temperature by almost 30 °C. The thermal stability of the sfGFP-aGFPenh complex is close to 85 °C in the pH range 7.0–8.5. For therapeutic applications thermoresistance is often an essential factor. Our results suggest that methodologies based on GFP-aGFP interaction can be applied under a wide range of physicochemical conditions. The aGFPenh nanobody seems to be suitable for manipulating sfGFP-labeled targets even in extreme thermophilic organisms.
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献