Abstract
Abstract
Objective
The SARS-CoV-2 pandemic has prompted one of the most extensive and expeditious genomic sequencing efforts in history. Each viral genome is accompanied by a set of metadata which supplies important information such as the geographic origin of the sample, age of the host, and the lab at which the sample was sequenced, and is integral to epidemiological efforts and public health direction. Here, we interrogate some shortcomings of metadata within the GISAID database to raise awareness of common errors and inconsistencies that may affect data-driven analyses and provide possible avenues for resolutions.
Results
Our analysis reveals a startling prevalence of spelling errors and inconsistent naming conventions, which together occur in an estimated ~ 9.8% and ~ 11.6% of “originating lab” and “submitting lab” GISAID metadata entries respectively. We also find numerous ambiguous entries which provide very little information about the actual source of a sample and could easily associate with multiple sources worldwide. Importantly, all of these issues can impair the ability and accuracy of association studies by deceptively causing a group of samples to identify with multiple sources when they truly all identify with one source, or vice versa.
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference28 articles.
1. Goble C, Corcho O, Alper P, De Roure D. e-Science and the semantic web: a symbiotic relationship. In: Discovery science. Berlin, Heidelberg: Springer; 2006. pp. 1–12.
2. Matters MD, Lekiachvili A, Savel T, Zheng Z-J. Developing metadata to organize public health datasets. AMIA Annu Symp Proc. 2005;2005:1047.
3. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol. 2008;26:541–7.
4. McMahon C, Denaxas S. A novel framework for assessing metadata quality in epidemiological and public health research settings. AMIA Jt Summits Transl Sci Proc. 2016;2016:199–208.
5. Martin MA, VanInsberghe D, Koelle K. Insights from SARS-CoV-2 sequences. Science. 2021;371:466–7.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献