Decoding force production of skeletal muscle from the female brain using functional near-infrared spectroscopy

Author:

Kim Hojeong

Abstract

Abstract Objective Noninvasive neural decoding enables predicting motor output from neural activities without physically damaging the human body. A recent study demonstrated the applicability of functional near-infrared spectroscopy (fNIRS) to decode muscle force production from hemodynamic signals measured in the male brain. However, given the sex differences in cerebral blood flow and muscle physiology, whether the fNIRS approach can also be applied to the female brain remains elusive. Therefore, this study aimed to evaluate whether fNIRS can be used to identify the optimal cortical region and hemodynamic predictor to decode muscle force output in females. Results Statistical group analysis for eight healthy female adults showed that the cortical region for wrist control was topologically dorsal to that for finger control over the primary sensorimotor cortex. This cortical area was maximally activated while the wrist flexor muscles were contracted to hold a load on the subject’s palm, as was the case for males. However, the dynamics of oxyhemoglobin concentration measured from the most activated cortical area differed between females and males. The signal intensity during 100% maximal voluntary contraction and the signal increase rate at 50% maximal voluntary contraction was lower and faster in females. Eight predictors were used to characterize hemodynamic signals’ amplitude and temporal variation in the female cortex. Unlike the case for males, only the trajectory predictors for the amplitude of oxyhemoglobin concentration change were strongly correlated with the strengths of force produced by the wrist flexor muscles, showing a linear relationship. These results suggest gender-specific hemodynamics must be considered for decoding low-level motor control with fNIRS in females.

Funder

Ministry of Science and ICT, South Korea

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3