PARSID: a Python script for automatic analysis of local BLAST results for a rapid molecular taxonomic identification

Author:

Piccoli Costanza,Muñoz-Mérida Antonio,Crottini Angelica

Abstract

Abstract Objective A reliable taxonomic identification of species from molecular samples is the first step for many studies. For researchers unfamiliar with programming, running a BLAST analysis, filtering, and organizing results for hundreds of sequences through the BLAST web interface can be difficult. Additionally, sequences deposited in GenBank can have outdated taxonomic identification. The use of reliable Reference Sequences Library (RSL) containing accurate taxonomically-identified sequences facilitates this task. Pending the availability of a RSL with the user, we developed a tool that automates the molecular taxonomic identification of sequences. Results We developed PARSID, a Python script running through the command-line that automates the routine workflow of blasting an input sequence file against the user’s RSL, and retrieves the matches with the highest percentage of identity in five steps. PARSID accepts cut-off parameters and supplementary information in a.csv file for filtering the results. The final output is visualized in a spreadsheet. We tested its functioning using 10 input sequences simulating different situations of the molecular taxonomic identification of sequences against an example RSL containing 25 sequences. Step-by-step instructions and test files are publicly available at https://github.com/kokinide/PARSID.git.

Funder

Fundação para a Ciência e a Tecnologia

BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3