Database comments on Telegram channels related to cryptocurrencies with sentiments

Author:

Jahanbin Kia,Chahooki Mohammad Ali Zare,Yazdian-Dehkordi Mahdi,Rahmanian Fereshte

Abstract

Abstract Objectives Due to the limitations of Twitter, the expansion of Telegram channels, and the Telegram API’s easy use, Telegram comments have become prevalent. Telegram is one of the most popular social networks, unlike Twitter, which has no restrictions on sending messages, and experts can share their opinions and media. Some of these channels, managed by influencers of large companies, are very influential in the behavior of the market on various stocks, including cryptocurrencies. In this research, the opinion collection of 10 famous Telegram channels regarding the analysis of cryptocurrencies has been extracted. The sentiments of these opinions have been analyzed using the HDRB model. HDRB is a hybrid model of RoBERTa deep neural network, BiGRU, and attention layer used for sentiment analysis (SA). Analyzing the sentiments of these opinions is very important for understanding the future behavior of the market and managing the stock portfolio. The opinions of this dataset, published by experts in the field of cryptocurrencies, are precious, unlike the opinions that are extracted only by using the hashtag of the names of cryptocurrencies. On the other hand, the dataset related to cryptocurrencies, which has the opinions of experts and the polarity of their feelings, is very rare. Data description The dataset of this research is the sentiments of more than ten popular Telegram channels regarding a wide range of cryptocurrencies. These comments were collected through the Telegram API from December 2023 to March 2024. This data set contains an Excel file containing the text of the comments, the date of comment creation, the number of views, the compound score, the sentiment score, and the type of sentiment polarity. These opinions cover influencer analysis on a wide range of cryptocurrencies. Also, two Word files, one containing the description of the dataset columns and the other Python code for extracting comments from Telegram channels, are included in this dataset.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3