Biclique: an R package for maximal biclique enumeration in bipartite graphs

Author:

Lu YupingORCID,Phillips Charles A.,Langston Michael A.

Abstract

Abstract Objective Bipartite graphs are widely used to model relationships between pairs of heterogeneous data types. Maximal bicliques are foundational structures in such graphs, and their enumeration is an important task in systems biology, epidemiology and many other problem domains. Thus, there is a need for an efficient, general purpose, publicly available tool to enumerate maximal bicliques in bipartite graphs. The statistical programming language R is a logical choice for such a tool, but until now no R package has existed for this purpose. Our objective is to provide such a package, so that the research community can more easily perform this computationally demanding task. Results Biclique is an R package that takes as input a bipartite graph and produces a listing of all maximal bicliques in this graph. Input and output formats are straightforward, with examples provided both in this paper and in the package documentation. Biclique employs a state-of-the-art algorithm previously developed for basic research in functional genomics. This package, along with its source code and reference manual, are freely available from the CRAN public repository at https://cran.r-project.org/web/packages/biclique/index.html.

Funder

National Institutes of Health

U.S. Environmental Protection Agency

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference15 articles.

1. Peeters R. The maximum edge biclique problem is NP-complete. Discrete Appl Math. 2003;131(3):651–4.

2. Garey MR, Johnson DS. Computers and intractability: a guide to the theory of NP-completeness. New york: W. H. Freeman and Company; 1979.

3. Cheng Y, Church GM. Biclustering of expression data. In: Proceedings, International Conference on Intelligent Systems for Molecular Biology. 2000. 93–103.

4. Tanay A, Sharan R, Shamir R. Discovering statistically significant BIclusters in gene expression data. Bioinformatics. 2002;18:136–44.

5. Wang H, Wang W, Yang J, Yu PS: Clustering by pattern similarity in large data sets. In: Proceedings of the 2002 ACM SIGMOD international conference on Management of data; Madison, Wisconsin. 564737: ACM 2002: 394-405.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3