Exposure to perfluorooctanoic acid (PFOA) decreases neutrophil migration response to injury in zebrafish embryos

Author:

Pecquet Alison M.,Maier Andrew,Kasper Susan,Sumanas Saulius,Yadav JagjitORCID

Abstract

Abstract Objective Perfluorooctanoic acid (PFOA) is a ubiquitous environmental contaminant and a known immune suppressant in humans and experimental animal models. Studies on PFOA have focused on suppression of the adaptive immune response; however, little is known of the impact on innate immunity, especially during embryogenesis. Therefore, we utilized the zebrafish chemotaxis assay coupled with in situ hybridization for myeloperoxidase expression to determine the effects of PFOA exposure on neutrophil migration in the developing zebrafish embryo. Zebrafish embryos are a well-established in vivo model that exhibit high homology with the development of human innate immunity. Results Treatment of zebrafish with increasing concentrations of PFOA identified the lethal concentration in 50% of the embryos (LC50) to be 300 mg/L. Utilizing the zebrafish chemotaxis assay, this study showed that wounding induced significant neutrophil migration to the site of injury, and that neutrophil number in the wound region was significantly reduced in response to 48-h PFOA exposure (well below doses causing acute mortality). This study demonstrates that the developing embryo is sensitive to PFOA exposure and that PFOA can modify the innate immune system during embryonic development. These results lay the groundwork for future investigation on the mechanisms underlying PFOA-induced developmental immunotoxicity.

Funder

National Institute for Occupational Safety and Health

National Institute for Environmental Health Sciences

Cincinnati Children’s Research Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference33 articles.

1. Hartung T, Corsini E. Immunotoxicology: challenges in the 21st century and in vitro opportunities. Altex. 2013;30:411–26.

2. Dietert RR, Luebke RW. The Environment-immune route to chronic disease. In: Dietert RR, Luebke RW, editors. Immunotoxicity, Immune Dysfunction, and Chronic Disease, Molecular and Integrative Toxicology. Humana Press; 2015. p. 31-47.

3. National Toxicology Program (NTP). NTP Monograph. Immunotoxicity Associated with Exposure to Perfluorooctanoic Acid or Perfluorooctane Sulfonate. National Institute of Environmental Health Sciences, National Institutes of Health. U.S. Department of Health and Human Services; 2016.

4. DeWitt JC, Blossom SJ, Schaider LA. Exposure to per-fluoroalkyl and polyfluoroalkyl substances leads to immunotoxicity: epidemiological and toxicological evidence. J Expo Sci Environ Epidemiol. 2019;29(2):148–56.

5. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Perfluoroalkyls. Draft for Public Comment. Division of Toxicology and Human Health Sciences; 2018.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3