A model-agnostic approach for understanding heart failure risk factors

Author:

Miran Seyed M.,Nelson Stuart J.,Zeng-Treitler Qing

Abstract

Abstract Objective Understanding the risk factors for developing heart failure among patients with type 2 diabetes can contribute to preventing deterioration of quality of life for those persons. Electronic health records (EHR) provide an opportunity to use sophisticated machine learning models to understand and compare the effect of different risk factors for developing HF. As the complexity of the model increases, however, the transparency of the model often decreases. To interpret the results, we aimed to develop a model-agnostic approach to shed light on complex models and interpret the effect of features on developing heart failure. Using the HealthFacts EHR database of the Cerner EHR, we extracted the records of 723 patients with at least 6 yeas of follow up of type 2 diabetes, of whom 134 developed heart failure. Using age and comorbidities as features and heart failure as the outcome, we trained logistic regression, random forest, XGBoost, neural network, and then applied our proposed approach to rank the effect of each factor on developing heart failure. Results Compared to the “importance score” built-in function of XGBoost, our proposed approach was more accurate in ranking the effect of the different risk factors on developing heart failure.

Funder

National Institutes of Health

U.S. Department of Veterans Affairs

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3