Author:
Miran Seyed M.,Nelson Stuart J.,Zeng-Treitler Qing
Abstract
Abstract
Objective
Understanding the risk factors for developing heart failure among patients with type 2 diabetes can contribute to preventing deterioration of quality of life for those persons. Electronic health records (EHR) provide an opportunity to use sophisticated machine learning models to understand and compare the effect of different risk factors for developing HF. As the complexity of the model increases, however, the transparency of the model often decreases. To interpret the results, we aimed to develop a model-agnostic approach to shed light on complex models and interpret the effect of features on developing heart failure. Using the HealthFacts EHR database of the Cerner EHR, we extracted the records of 723 patients with at least 6 yeas of follow up of type 2 diabetes, of whom 134 developed heart failure. Using age and comorbidities as features and heart failure as the outcome, we trained logistic regression, random forest, XGBoost, neural network, and then applied our proposed approach to rank the effect of each factor on developing heart failure.
Results
Compared to the “importance score” built-in function of XGBoost, our proposed approach was more accurate in ranking the effect of the different risk factors on developing heart failure.
Funder
National Institutes of Health
U.S. Department of Veterans Affairs
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献