Knockout of a key gene of the nicotine biosynthetic pathway severely affects tobacco growth under field, but not greenhouse conditions

Author:

Smith William A.,Matsuba Yuki,Dewey Ralph E.ORCID

Abstract

Abstract Objective There is great interest in developing tobacco plants containing minimal amounts of the addictive compound nicotine. Quinolate phosphoribosyltransferase (QPT) is an important enzyme both for primary (NAD production) and secondary (pyridine alkaloid biosynthesis) metabolism in tobacco. The duplication of an ancestral QPT gene in Nicotiana species has resulted in two closely related QPT gene paralogs: QPT1 which is expressed at modest levels throughout the plant, and QPT2 which is coordinately regulated with genes dedicated to alkaloid biosynthesis. This study evaluated the utility of knocking out QPT2 function as a means for producing low alkaloid tobacco plants. Results CRISPR/Cas9 vectors were developed to specifically mutate the tobacco QPT2 genes associated with alkaloid production. Greenhouse-grown qpt2 plants accumulated dramatically less nicotine than controls, while displaying only modest growth differences. In contrast, when qpt2 lines were transplanted to a field environment, plant growth and development was severely inhibited. Two conclusions can be inferred from this work: (1) QPT1 gene function alone appears to be inadequate for meeting the QPT demands of the plant for primary metabolism when grown in a field environment; and (2) the complete knockout of QPT2 function is not a viable strategy for producing agronomically useful, low nicotine tobaccos.

Funder

22nd Century Group, Inc.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3