Author:
DeLuca Stephanie C.,Wallace Dory A.,Trucks Mary Rebekah,Mukherjee Konark
Abstract
Abstract
Objectives
Children with microcephaly face lifelong psychomotor, cognitive, and communications skills disabilities. Etiology of microcephaly is heterogeneous but presentation often includes seizures, hypotonia, ataxia, stereotypic movements, attention deficits, excitability, cognitive delays, and poor communication skills. Molecular diagnostics have outpaced available interventions and most children receive generic physical, speech, and occupational therapies with little attention to the efficacy of such treatments. Mutations in the X-linked intellectual disability gene (XLID) CASK is one etiology associated with microcephaly which produces mental retardation and microcephaly with pontine and cerebellar hypoplasia (MICPCH; OMIM# 300749). We pilot-tested an intensive therapy in three girls with heterozygous mutation in the gene CASK and MICPCH. Child A = 54 months; Child B = 89 months; and Child C = 24 months received a targeted treatment to improve gross/fine motor skills, visual-motor coordination, social interaction, and communication. Treatment was 4 h each weekday for 10 treatment days. Operant training promoted/refined goal-directed activities. The Peabody Developmental Motor Scales 2 was administered pre- and post-treatment.
Results
Child A gained 14 developmental months; Child B gained 20 developmental months; and Child C gained 39 developmental months. This case series suggests that children with MICPCH are responsive to intensive therapy aimed at increasing functional skills/independence.
Trial Registration ClinicalTrials.gov Registration Number: NCT03325946; Release Date: October 30, 2017
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference30 articles.
1. Faheem M, Naseer MI, Rasool M, Chaudhary AG, Kumosani TA, Ilyas AM, Saleh Jamal H. Molecular genetics of human primary microcephaly: an overview. BMC Med Genomics. 2000;8(Suppl):1. https://doi.org/10.1186/1755-8794-8-S1-S4.
2. Woods CG, Parker A. Investigating microcephaly. Arch Dis Child. 2013;98(9):707–13. https://doi.org/10.1136/archdischild-2012-302882.
3. Ashwal S, Michelson D, Plawner L, Dobyns WB, Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Practice parameter: evaluation of the child with microcephaly (an evidence-based review): report of the quality standards subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2009;73(11):887–97. https://doi.org/10.1212/WNL.0b013e3181b783f7.
4. Centers for Disease Control and Prevention: Birth defects. Facts about microcephaly. 2016. https://www.cdc.gov/ncbddd/birthdefects/microcephaly.html.
5. Lindhurst MJ, Biesecker LG. Amish Lethal Microcephaly. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJ, Stephens K, editors. GeneReviews. Seattle (WA): University of Washington: 1993. http://www.ncbi.nlm.nih.gov/books/NBK1365/.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献