Abstract
AbstractObjectiveThe nuclear and mitochondrial genomes ofDictyostelium discoideum, a unicellular eukaryote, have relatively high A+T-contents of 77.5% and 72.65%, respectively. To begin to investigate how the pyrimidine biosynthetic pathway fulfills the demand for dTTP, we determined the catalytic properties and structure of the key enzyme deoxyuridine triphosphate nucleotidohydrolase (dUTPase) that hydrolyzes dUTP to dUMP, the precursor of dTTP.ResultsThe annotated genome ofD. discoideumidentifies a gene encoding a polypeptide containing the five conserved motifs of homotrimeric dUTPases. Recombinant proteins, comprised of either full-length or core polypeptides with all conserved motifs but lacking residues 1-37 of the N-terminus, were active dUTPases. Crystallographic analyses of the core enzyme indicated that the C-termini, normally flexible, were constrained by interactions with the shortened N-termini that arose from the loss of residues 1-37. This allowed greater access of dUTP to active sites, resulting in enhanced catalytic parameters. A tagged protein comprised of the N-terminal forty amino acids of dUTPase fused to green fluorescent protein (GFP) was expressed inD. discoideumcells. Supporting a prediction of mitochondrial targeting information within the N-terminus, localization and subcellular fractionation studies showed GFP to be in mitochondria. N-terminal sequencing of immunoprecipitated GFP revealed the loss of the dUTPase sequence upon import into the organelle.
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference33 articles.
1. Eichinger L, Pachebat JA, Glockner G, Rajandream MA, Sucgang R, Berriman M, et al. The genome of the social amoeba Dictyostelium discoideum. Nature. 2005;435(7038):43–57.
2. Ogawa S, Yoshino R, Angata K, Iwamoto M, Pi M, Kuroe K, et al. The mitochondrial DNA of Dictyostelium discoideum: complete sequence, gene content and genome organization. Mol Gen Genet. 2000;263(3):514–9.
3. Chen G, Shaulsky G, Kuspa A. Tissue-specific G1-phase cell-cycle arrest prior to terminal differentiation in Dictyostelium. Development. 2004;131(11):2619–30.
4. Muramoto T, Chubb JR. Live imaging of the Dictyostelium cell cycle reveals widespread S phase during development, a G2 bias in spore differentiation and a premitotic checkpoint. Development. 2008;135(9):1647–57.
5. Shaulsky G, Loomis WF. Mitochondrial DNA replication but no nuclear DNA replication during development of Dictyostelium. Proc Natl Acad Sci USA. 1995;92(12):5660–3.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献