An inversion-based clustering approach for complex clusters

Author:

Barati Jozan Mohammad Mahdi,Lotfata Aynaz,Hamilton Howard J.,Tabesh Hamed

Abstract

Abstract Background The choice of an appropriate similarity measure plays a pivotal role in the effectiveness of clustering algorithms. However, many conventional measures rely solely on feature values to evaluate the similarity between objects to be clustered. Furthermore, the assumption of feature independence, while valid in certain scenarios, does not hold true for all real-world problems. Hence, considering alternative similarity measures that account for inter-dependencies among features can enhance the effectiveness of clustering in various applications. Methods In this paper, we present the Inv measure, a novel similarity measure founded on the concept of inversion. The Inv measure considers the significance of features, the values of all object features, and the feature values of other objects, leading to a comprehensive and precise evaluation of similarity. To assess the performance of our proposed clustering approach that incorporates the Inv measure, we evaluate it on simulated data using the adjusted Rand index. Results The simulation results strongly indicate that inversion-based clustering outperforms other methods in scenarios where clusters are complex, i.e., apparently highly overlapped. This showcases the practicality and effectiveness of the proposed approach, making it a valuable choice for applications that involve complex clusters across various domains. Conclusions The inversion-based clustering approach may hold significant value in the healthcare industry, offering possible benefits in tasks like hospital ranking, treatment improvement, and high-risk patient identification. In social media analysis, it may prove valuable for trend detection, sentiment analysis, and user profiling. E-commerce may be able to utilize the approach for product recommendation and customer segmentation. The manufacturing sector may benefit from improved quality control, process optimization, and predictive maintenance. Additionally, the approach may be applied to traffic management and fleet optimization in the transportation domain. Its versatility and effectiveness make it a promising solution for diverse fields, providing valuable insights and optimization opportunities for complex and dynamic data analysis tasks.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3