Author:
Carskadon Mary A.,Chappell Kenneth R.,Barker David H.,Hart Anne C.,Dwyer Kayla,Gredvig-Ardito Caroline,Starr Caitlyn,McGeary John E.
Abstract
Abstract
Objective
Molecular markers in DNA methylation at a subset of CpG sites are affected by the environment and contribute to biological (epigenetic) age. We hypothesized that shorter sleep duration and possibly irregular sleep would be associated with accelerated epigenetic aging. We examined epigenetic vs. chronological age in 12 young women selected as shorter or longer sleepers studied prospectively across the first 9 weeks of college using a daily online sleep log. Genomic DNA was isolated from two blood samples spanning the interval, and DNA methylation levels were determined and used to measure epigenetic age.
Results
Epigenetic vs. chronological age differences averaged 2.07 at Time 1 and 1.21 at Time 2. Sleep duration was computed as average daily total sleep time and sleep regularity was indexed using the Sleep Regularity Index. Participants with longer and more regular sleep showed reduced age difference: mean = − 2.48 [95% CI − 6.11; 1.15]; those with shorter and more irregular sleep showed an increased age difference: 3.03 [0.02; 6.03]; and those with either shorter or more irregular sleep averaged no significant change: − 0.49 [− 3.55; 2.56]. These pilot data suggest that short and irregular sleep, even in a young healthy sample, may be associated with accelerated epigenetic aging.
Funder
National Institute of Mental health
Periodic Breathing Foundation
Sleep Research Society Foundation
National Institute of Neurological Disorders and Stroke
U.S. Department of Veteran Affairs
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献