Abstract
Abstract
Objective
Patterns of cryopreservation of explanted skull bone flaps have long been a matter of debate, in particular the appropriate temperature of storage. To the best of our knowledge no study to date has compared the microbiological profile and the infection potential of skull bone flaps cryostored at the same institution at disparate degrees for neurosurgical purposes. In the context of our clinical trial DRKS00023283, we performed a bacterial culture of explanted skull bone flaps, which were cryopreserved lege artis at a temperature of either − 23 °C or − 80 °C after a decompressive hemicraniectomy. In a further step, we contaminated the bone fragments in a s uspension with specific pathogens (S. aureus, S. epidermidis and C. acnes, Colony forming unit CFU 103/ml) over 24 h and conducted a second culture.
Results
A total of 17 cryopreserved skull flaps (8: − 23 °C; 9: − 80 °C) explanted during decompressive hemicraniectomies performed between 2019 and 2020 as well as 2 computer-aided-designed skulls (1 vancomycin-soaked) were analyzed. Median duration of cryopreservation was 10.5 months (2–17 months). No microorganisms were detected at the normal bacterial culture. After active contamination of our skull flaps, all samples showed similar bacterial growth of above-mentioned pathogens; thus, our study did not reveal an influence of the storage temperature upon infectious dynamic of the skulls.
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference24 articles.
1. El Ahmadieh TY, et al. Surgical treatment of elevated intracranial pressure: decompressive craniectomy and intracranial pressure monitoring. Neurosurg Clin N Am. 2013;24(3):375–91.
2. Bender A, et al. Early cranioplasty may improve outcome in neurological patients with decompressive craniectomy. Brain Inj. 2013;27(9):1073–9.
3. Dünisch P, et al. Risk factors of aseptic bone resorption: a study after aut ologous bone flap reinsertion due to decompressive craniotomy. J Neurosurg. 2013;118(5):1141–7.
4. Hutchinson PJ, et al. Decompressive craniectomy in traumatic brain injury the randomized multicenter RESCUEicp study (www.RESCUEicp.com). In: Hoff JT, Keep RF, Xi G, Hua Y, editors., et al., Acta Neurochir Suppl. Vienna: Springer; 2006. p. 17–20.
5. Geurts M, et al. Surgical decompression for space-occupying cerebral infarction: outcomes at 3 years in the randomized HAMLET trial. Stroke. 2013;44(9):2506–8.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献