Pathological cell-cell interactions are necessary for striatal pathogenesis in a conditional mouse model of Huntington's disease

Author:

Gu Xiaofeng,André Véronique M,Cepeda Carlos,Li Shi-Hua,Li Xiao-Jiang,Levine Michael S,Yang X William

Abstract

Abstract A critical issue in understanding Huntington's disease (HD) pathogenesis is how the ubiquitously expressed mutant huntingtin (mhtt) with an expanded polyglutamine repeat can cause selective toxicity of striatal and cortical neurons. Two potential cellular models may contribute to such specificity: expression of mhtt in these vulnerable neurons alone may be sufficient to result in their dysfunction and/or degeneration (cell-autonomous model); or mhtt in other cell types can elicit pathological cell-cell interactions to cause the vulnerable neurons to become dysfunctional and be at risk for degeneration (cell-cell interaction model). To distinguish between these two models, we have selectively expressed a neuropathogenic fragment of mhtt-exon1 in striatal medium spiny neurons (MSNs) by crossing a conditional mouse model of HD with a striatal-specific Cre mouse line. In this striatal model of HD, we observed progressive and cell-autonomous nuclear accumulation of mhtt aggregates in MSNs. Surprisingly, unlike the mouse model expressing mhtt-exon1 in all the neurons in the brain, the striatal model lacks significant locomotor deficits and striatal neuropathology including gliosis and dark degenerating neurons. Electrophysiological findings from acutely dissociated MSNs revealed a cell-autonomous deficit in N-methyl-d-aspartate (NMDA) receptor sensitivity to Mg2+, a deficit also present in other mouse models of HD. In conclusion, this study provides the first in vivo genetic evidence that pathological cell-cell interactions are necessary for striatal pathogenesis in a conditional mouse model of HD, and suggests a ''two-hit'' hypothesis in which both cell-autonomous toxicity and pathological cell-cell interactions are critical to HD pathogenesis.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Molecular Biology

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3