Author:
Altmeppen Hermann C,Prox Johannes,Puig Berta,Kluth Mark A,Bernreuther Christian,Thurm Dana,Jorissen Ellen,Petrowitz Bettina,Bartsch Udo,De Strooper Bart,Saftig Paul,Glatzel Markus
Abstract
Abstract
Background
The cellular prion protein (PrPC) fulfils several yet not completely understood physiological functions. Apart from these functions, it has the ability to misfold into a pathogenic scrapie form (PrPSc) leading to fatal transmissible spongiform encephalopathies. Proteolytic processing of PrPC generates N- and C-terminal fragments which play crucial roles both in the pathophysiology of prion diseases and in transducing physiological functions of PrPC. A-disintegrin-and-metalloproteinase 10 (ADAM10) has been proposed by cell culture experiments to be responsible for both shedding of PrPC and its α-cleavage. Here, we analyzed the role of ADAM10 in the proteolytic processing of PrPC
in vivo.
Results
Using neuron-specific Adam10 knockout mice, we show that ADAM10 is the sheddase of PrPC and that its absence in vivo leads to increased amounts and accumulation of PrPC in the early secretory pathway by affecting its posttranslational processing. Elevated PrPC levels do not induce apoptotic signalling via p53. Furthermore, we show that ADAM10 is not responsible for the α-cleavage of PrPC.
Conclusion
Our study elucidates the proteolytic processing of PrPC and proves a role of ADAM10 in shedding of PrPC
in vivo. We suggest that ADAM10 is a mediator of PrPC homeostasis at the plasma membrane and, thus, might be a regulator of the multiple functions discussed for PrPC. Furthermore, identification of ADAM10 as the sheddase of PrPC opens the avenue to devising novel approaches for therapeutic interventions against prion diseases.
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology (clinical),Molecular Biology
Reference55 articles.
1. Steele AD, Emsley JG, Ozdinler PH, Lindquist S, Macklis JD: Prion protein (PrPc) positively regulates neural precursor proliferation during developmental and adult mammalian neurogenesis. Proc Natl Acad Sci USA. 2006, 103 (9): 3416-3421. 10.1073/pnas.0511290103.
2. Bremer J, Baumann F, Tiberi C, Wessig C, Fischer H, Schwarz P, Steele AD, Toyka KV, Nave KA, Weis J, et al: Axonal prion protein is required for peripheral myelin maintenance. Nat Neurosci. 2010, 13 (3): 310-318. 10.1038/nn.2483.
3. Sunyach C, Cisse MA, da Costa CA, Vincent B, Checler F: The C-terminal products of cellular prion protein processing, C1 and C2, exert distinct influence on p53-dependent staurosporine-induced caspase-3 activation. J Biol Chem. 2007, 282 (3): 1956-1963.
4. Chesebro B, Race B, Meade-White K, Lacasse R, Race R, Klingeborn M, Striebel J, Dorward D, McGovern G, Jeffrey M: Fatal transmissible amyloid encephalopathy: a new type of prion disease associated with lack of prion protein membrane anchoring. PLoS Pathog. 2010, 6 (3): e1000800-10.1371/journal.ppat.1000800.
5. Klingeborn M, Race B, Meade-White KD, Rosenke R, Striebel JF, Chesebro B: Crucial Role for Prion Protein Membrane Anchoring in the Neuroinvasion and Neural Spread of Prion Infection. J Virol. 2010
Cited by
92 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献