Signal peptide peptidase (SPP) dimer formation as assessed by fluorescence lifetime imaging microscopy (FLIM) in intact cells

Author:

Nyborg Andrew C,Herl Lauren,Berezovska Oksana,Thomas Anne V,Ladd Thomas B,Jansen Karen,Hyman Bradley T,Golde Todd E

Abstract

Abstract Background Signal peptide peptidase (SPP) is an intramembrane cleaving protease identified by its cleavage of several type II membrane signal peptides. Conservation of intramembrane active site residues demonstrates that SPP, SPP family members, and presenilins (PSs) make up a family of intramembrane cleaving proteases. Because SPP appears to function without additional protein cofactors, the study of SPP may provide structural insights into the mechanism of intramembrane proteolysis by this biomedically important family of proteins. Previous studies have shown that SPP isolated from cells appears to be a homodimer, but some evidence exists that in vitro SPP may be active as a monomer. We have conducted additional experiments to determine if SPP exists as a monomer or dimer in vivo. Results Fluorescence lifetime imaging microscopy (FLIM) can be is used to determine intra- or intermolecular interactions by fluorescently labeling epitopes on one or two different molecules. If the donor and acceptor fluorophores are less than 10 nm apart, the donor fluorophore lifetime shortens proportionally to the distance between the fluorophores. In this study, we used two types of fluorescence energy transfer (FRET) pairs; cyan fluorescent protein (CFP) with yellow fluorescent protein (YFP) or Alexa 488 with Cy3 to differentially label the NH2- or COOH-termini of SPP molecules. A cell based SPP activity assay was used to show that all tagged SPP proteins are proteolytically active. Using FLIM we were able to show that the donor fluorophore lifetime of the CFP tagged SPP construct in living cells significantly decreases when either a NH2- or COOH-terminally YFP tagged SPP construct is co-transfected, indicating close proximity between two different SPP molecules. These data were then confirmed in cell lines stably co-expressing V5- and FLAG-tagged SPP constructs. Conclusion Our FLIM data strongly suggest dimer formation between two separate SPP proteins. Although the tagged SPP constructs are expressed throughout the cell, SPP dimer detection by FLIM is seen predominantly at or near the plasma membrane.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3