Cloud Control System Architectures, Technologies and Applications on Intelligent and Connected Vehicles: a Review

Author:

Chu Wenbo,Wuniri Qiqige,Du Xiaoping,Xiong Qiuchi,Huang Tai,Li Keqiang

Abstract

AbstractThe electrification of vehicle helps to improve its operation efficiency and safety. Due to fast development of network, sensors, as well as computing technology, it becomes realizable to have vehicles driving autonomously. To achieve autonomous driving, several steps, including environment perception, path-planning, and dynamic control, need to be done. However, vehicles equipped with on-board sensors still have limitations in acquiring necessary environmental data for optimal driving decisions. Intelligent and connected vehicles (ICV) cloud control system (CCS) has been introduced as a new concept as it is a potentially synthetic solution for high level automated driving to improve safety and optimize traffic flow in intelligent transportation. This paper systematically investigated the concept of cloud control system from cloud related applications on ICVs, and cloud control system architecture design, as well as its core technologies development. Based on the analysis, the challenges and suggestions on cloud control system development have been addressed.

Funder

Beijing Municipal Science & Technology Commission

Beijing Nova Program of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference195 articles.

1. A Talebpour, H S Mahmassani, Influence of connected and autonomous vehicles on traffic flow stability and throughput. Transportation Research Part C: Emerging Technologies, 2016, 71: 143–163.

2. J J Q Yu, A Lam. Autonomous vehicle logistic system: Joint routing and charging strategy. IEEE Transactions on Intelligent Transportation Systems, 2017: 1–13.

3. J Jeongmin, J Byungjin, K J Choon et al. Autonomous robotic street sweeping: Initial attempt for curbside sweeping. IEEE International Conference on Consumer Electronics, Las Vegas, USA, 8–10 Jan. 2017: 72–73.

4. C I Liu, P A Ioannou. A comparison of different AGV dispatching rules in an automated container terminal. International Conference on Intelligent Transportation Systems, Singapore, 3-6 Sept. 2002: 880–885.

5. V Androulakis, J Sottile, S Schafrik et al. Concepts for development of autonomous coal mine shuttle cars. IEEE Transactions on Industry Applications, 2020, 56(3): 3272–3280.

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3