Abstract
AbstractShield machines are currently the main tool for underground tunnel construction. Due to the complexity and variability of the underground construction environment, it is necessary to accurately identify the ground in real-time during the tunnel construction process to match and adjust the tunnel parameters according to the geological conditions to ensure construction safety. Compared with the traditional method of stratum identification based on staged drilling sampling, the real-time stratum identification method based on construction data has the advantages of low cost and high precision. Due to the huge amount of sensor data of the ultra-large diameter mud-water balance shield machine, in order to balance the identification time and recognition accuracy of the formation, it is necessary to screen the multivariate data features collected by hundreds of sensors. In response to this problem, this paper proposes a voting-based feature extraction method (VFS), which integrates multiple feature extraction algorithms FSM, and the frequency of each feature in all feature extraction algorithms is the basis for voting. At the same time, in order to verify the wide applicability of the method, several commonly used classification models are used to train and test the obtained effective feature data, and the model accuracy and recognition time are used as evaluation indicators, and the classification with the best combination with VFS is obtained. The experimental results of shield machine data of 6 different geological structures show that the average accuracy of 13 features obtained by VFS combined with different classification algorithms is 91%; among them, the random forest model takes less time and has the highest recognition accuracy, reaching 93%, showing best compatibility with VFS. Therefore, the VFS algorithm proposed in this paper has high reliability and wide applicability for stratum identification in the process of tunnel construction, and can be matched with a variety of classifier algorithms. By combining 13 features selected from shield machine data features with random forest, the identification of the construction stratum environment of shield tunnels can be well realized, and further theoretical guidance for underground engineering construction can be provided.
Funder
Youth Fund of National Natural Science Foundation of China
National Key Research and Development Project
National Natural Science Foundation of China-Shanxi Joint Fund for Coal-Based Low-Carbon Technology
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering