Enhancing the Robustness of Rib-Groove Filling and Strain Homogeneity in the Isothermal Forging of Titanium Alloy Multi-Rib Components

Author:

Ding Tong,Wei Ke,Hou Yong,Dong Xianjuan,Huang Long,Lee Myoung-Gyu

Abstract

AbstractIsothermal forging stands as an effective technology for the production of large-scale titanium alloy multi-rib components. However, challenges have persisted, including die underfilling and strain concentration due to the complex material flow and heterogeneous deformation within the forging die cavity. While approaches centered on optimized billet designs have mitigated these challenges, uncertainties in process parameters continue to introduce unacceptable variations in forming accuracy and stability. To tackle this issue, this study introduced a multi-objective robust optimization approach for billet design, accounting for the multi-rib eigenstructure and potential uncertainties. The approach includes finite element (FE) modeling for analyzing the die-filling and strain inhomogeneity within the multi-rib eigenstructure. Furthermore, it integrated image acquisition perception and feed back technologies (IAPF) for real-time monitoring of material flow and filling sequences within die rib-grooves, validating the accuracy of the FE modeling. By incorporating dimensional parameters of the billet and uncertainty factors, including friction, draft angle, forming temperature, speed, and deviations in billet and die, quantitative analyses on the rib-groove filling and strain inhomogeneity with fluctuation were conducted. Subsequently, a dual-response surface model was developed for statistical analysis of the cavity filling and strain homogeneity. Finally, the robust optimization was processed using a non-dominated sorting genetic algorithm II (NSGA-II) and validated using the IAPF technologies. The proposed approach enables robust design enhancements for rib-groove filling and strain homogeneity in titanium alloy multi-rib components.

Funder

National Natural Science Foundation of China

China Scholarship Council

Four Diamonds

Natural Science Foundation of Jiangxi Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3