Modeling and Validation of Diamagnetic Rotor Levitated by Permanent Magnetics

Author:

Xu YuanpingORCID,Zhang Yue,Zhou Jin,Jin Chaowu

Abstract

AbstractAs an innovative, low-power consuming, and low-stiffness suspension approach, the diamagnetic levitation technique has attracted considerable interest because of its potential applicability in miniaturized mechanical systems. The foundation of a diamagnetic levitation system is mathematical modeling, which is essential for operating performance optimization and stability prediction. However, few studies on systematic mathematical modeling have been reported. In this study, a systematic mathematical model for a disc-shaped diamagnetically levitated rotor on a permanent magnet array is proposed. Based on the proposed model, the magnetic field distribution characteristics, diamagnetic levitation force characteristics (i.e., levitation height and stiffness), and optimized theoretical conditions for realizing stable levitation are determined. Experiments are conducted to verify the feasibility of the proposed mathematical model. Theoretical predictions and experimental results indicate that increasing the levitation height enlarges the stable region. Moreover, with a further increase in the rotor radius, the stable regions of the rotor gradually diminish and even vanish. Thus, when the levitation height is fixed, a moderate rotor radius permits stable levitation. This study proposes a mathematical modeling method for a diamagnetic levitation system that has potential applications in miniaturized mechanical systems.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3