Experimental Study on the Reduction Effect of Pit Texture on Disassembly Damage for Interference Fit

Author:

Zhou DanORCID,Xu Yi,Gao Xin,Huang Haihong,Lv Songjiang

Abstract

AbstractAfter remanufacturing disassembly, several kinds of friction damages can be found on the mating surface of interference fit. These damages should be repaired and the cost is closely related to the severity of damages. Inspired by the excellent performance of surface texture in wear reduction, 5 shapes of pit array textures are added to the specimens’ surface to study their reduction effect of disassembly damage for interference fit. The results of disassembly experiments show that the order of influence of texture parameters on disassembly damage is as follows: equivalent circle diameter of single texture, texture shape and texture surface density. The influence of equivalent circle diameter of single texture and texture shape are obviously more significant than that of texture surface density. The circular texture with a surface density of 30% and a diameter of 100 μm shows an excellent disassembly damage reduction effect because of its perfect ability of abrasive particle collection. And the probability of disassembly damage formation and evolution is also relatively small on this kind of textured surface. Besides, the load-carrying capacity of interference fit with the excellent texture is confirmed by load-carrying capacity experiments. The results show that the load-carrying capacity of the excellent texture surface is increased about 40% compared with that of without texture. This research provides a potential approach to reduce disassembly damage for interference fit.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3