DSN-BR-Based Online Inspection Method and Application for Surface Defects of Pharmaceutical Products in Aluminum-Plastic Blister Packages

Author:

Liu Mingzhou,Gong Yu,Wang XiaoqiaoORCID,Liu Conghu,Hu Jing

Abstract

AbstractEnsuring high product quality is of paramount importance in pharmaceutical drug manufacturing, as it is subject to rigorous regulatory practices. This study presents a research focused on the development of an on-line detection method and system for identifying surface defects in pharmaceutical products packaged in aluminum-plastic blisters. Firstly, the aluminum-plastic blister packages exhibit multi-scale features and inter-class indistinction. To address this, the deep semantic network with boundary refinement (DSN-BR) model is proposed, which leverages semantic segmentation domain knowledge, to accurately segment the defects in pixel level. Additionally, a specialized image acquisition module that minimizes the impact of ambient light is established, ensuring high-quality image capture. Finally, the image acquisition module, image detection module, and data management module are designed to construct a comprehensive online surface defect detection system. To validate the effectiveness of our approach, we employ a real dataset for instance verification on the implemented system. The experimental results substantiate the outstanding performance of the DSN-BR, achieving the mean intersection over union (MIoU) of 90.5%. Furthermore, the proposed system achieves an inference speed of up to 14.12 f/s, while attaining an F1-Score of 98.25%. These results demonstrate that the system meets the actual needs of the enterprise and provides theoretical and methodological support for intelligent inspection of product surface quality. By standardizing the control process of pharmaceutical manufacturing and improving the management capability of the manufacturing process, our approach holds significant market application prospects.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3