Experimental Study on Titanium Alloy Cutting Property and Wear Mechanism with Circular-arc Milling Cutters

Author:

Chen Tao,Liu Jiaqiang,Liu Gang,Xiao Hui,Li Chunhui,Liu Xianli

Abstract

AbstractTitanium alloy has been applied in the field of aerospace manufacturing for its high specific strength and hardness. Nonetheless, these properties also cause general problems in the machining, such as processing inefficiency, serious wear, poor workpiece face quality, etc. Aiming at the above problems, this paper carried out a comparative experimental study on titanium alloy milling based on the CAMC and BEMC. The variation law of cutting force and wear morphology of the two tools were obtained, and the wear mechanism and the effect of wear on machining quality were analyzed. The conclusion is that in contrast with BEMC, under the action of cutting thickness thinning mechanism, the force of CAMC was less, and its fluctuation was more stable. The flank wear was uniform and near the cutting edge, and the wear rate was slower. In the early period, the wear mechanism of CAMC was mainly adhesion. Gradually, oxidative wear also occurred with milling. Furthermore, the surface residual height of CAMC was lower. There is no obvious peak and trough accompanied by fewer surface defects.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3