Model Parameters Identification and Backstepping Control of Lower Limb Exoskeleton Based on Enhanced Whale Algorithm

Author:

Shi Yan,Kou Jiange,Chen Zhenlei,Wang Yixuan,Guo Qing

Abstract

AbstractExoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition. However, due to unknown model parameters such as the mass, moment of inertia and mechanical size, the dynamic model of exoskeletons is difficult to construct. Hence, an enhanced whale optimization algorithm (EWOA) is proposed to identify the exoskeleton model parameters. Meanwhile, the periodic excitation trajectories are designed by finite Fourier series to input the desired position demand of exoskeletons with mechanical physical constraints. Then a backstepping controller based on the identified model is adopted to improve the human-robot wearable comfortable performance under cooperative motion. Finally, the proposed Model parameters identification and control are verified by a two-DOF exoskeletons platform. The knee joint motion achieves a steady-state response after 0.5 s. Meanwhile, the position error of hip joint response is less than 0.03 rad after 0.9 s. In addition, the steady-state human-robot interaction torque of the two joints is constrained within 15 $${\text{N}\cdot\text{m}}$$ N · m . This research proposes a whale optimization algorithm to optimize the excitation trajectory and identify model parameters. Furthermore, an enhanced mutation strategy is adopted to avoid whale evolution's unsatisfactory local optimal value.

Funder

Key Technologies Research and Development Program

Ningbo Key Technology Research and Development Program under Grant

National Natural Science Foundation of China under Grant

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3