Neural Network Robust Control Based on Computed Torque for Lower Limb Exoskeleton

Author:

Han Yibo,Ma Hongtao,Wang Yapeng,Shi Di,Feng Yanggang,Li Xianzhong,Shi Yanjun,Ding Xilun,Zhang WuxiangORCID

Abstract

AbstractThe lower limb exoskeletons are used to assist wearers in various scenarios such as medical and industrial settings. Complex modeling errors of the exoskeleton in different application scenarios pose challenges to the robustness and stability of its control algorithm. The Radial Basis Function (RBF) neural network is used widely to compensate for modeling errors. In order to solve the problem that the current RBF neural network controllers cannot guarantee the asymptotic stability, a neural network robust control algorithm based on computed torque method is proposed in this paper, focusing on trajectory tracking. It innovatively incorporates the robust adaptive term while introducing the RBF neural network term, improving the compensation ability for modeling errors. The stability of the algorithm is proved by Lyapunov method, and the effectiveness of the robust adaptive term is verified by the simulation. Experiments wearing the exoskeleton under different walking speeds and scenarios were carried out, and the results show that the absolute value of tracking errors of the hip and knee joints of the exoskeleton are consistently less than 1.5°and 2.5°, respectively. The proposed control algorithm effectively compensates for modeling errors and exhibits high robustness.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3