Prediction and Analysis of the Force and Shape Parameters in Variable Gauge Rolling

Author:

Liu Yuanming,Wang Zhenhua,Wang Tao,Sun Jie,Zheng Xianguang,Zhang Dianhua,Huang Qingxue

Abstract

AbstractVariable gauge rolling is a new process to obtain a plate for which the thickness changes continuously by continuously and dynamically adjusting the roll gap upward and downward in the rolling process. This technology is an effective method for producing lightweight, low-cost, and economical plates. However, variable gauge rolling is an unsteady process, and the changes in the force and deformation parameters are complex. In this research, based on the minimum energy theory of the variational principle and considering the characteristics of the roll movement and workpiece deformation comprehensively, the internal plastic deformation, friction, shear and tension powers, and the minimum result of the total power functional in upward and downward rolling are obtained with the first integral and then with a variation of adopting the specific plastic power and strain rate vector inner product. The analytical results of the deformation and force parameters are also established using the variational method. Then the precision of this model is certified using the measured values in a medium plate hot rolling plant and the experimental data for Tailor Rolled Blank rolling. Good agreement is found. Additionally, the variation rule of bite angle, neutral angle, and location neutral points are shown, and the change mechanism of the friction parameter on the stress state effect coefficient is given in variable gauge rolling. This research proposes a new mathematical model for rolling process control that provides a scientific basis and technical support for obtaining an accurate section shape in variable gauge rolling production.

Funder

National Natural Science Foundation of China

State Key Laboratory of Synthetical Automation for Process Industries

Shanxi Province Science and Technology Major Projects

China Postdoctoral Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3