Multiscale Theories and Applications: From Microstructure Design to Macroscopic Assessment for Carbon Nanotubes Networks

Author:

Ji Jiachao,Jin Yulin,Hua Anping,Zhu Chunhua,Zhao Junhua

Abstract

AbstractCarbon nanotube (CNT) networks enable CNTs to be used as building blocks for synthesizing novel advanced materials, thus taking full advantage of the superior properties of individual CNTs. Multiscale analyses have to be adopted to study the load transfer mechanisms of CNT networks from the atomic scale to the macroscopic scale due to the huge computational cost. Among them, fully resolved structural features include the graphitic honeycomb lattice (atomic), inter-tube stacking (nano) and assembly (meso) of CNTs. On an atomic scale, the elastic properties, ultimate stresses, and failure strains of individual CNTs with distinct chiralities and radii are obtained under various loading conditions by molecular mechanics. The dependence of the cohesive energies on spacing distances, crossing angles, size and edge effects between two CNTs is analyzed through continuum modeling in nanoscale. The mesoscale models, which neglect the atomic structures of individual CNTs but retain geometrical information about the shape of CNTs and their assembly into a network, have been developed to study the multi-level mechanism of material deformation and microstructural evolution in CNT networks under stretching, from elastic elongation, strengthening to damage and failure. This paper summarizes the multiscale theories mentioned above, which should provide insight into the optimal assembling of CNT network materials for elevated mechanical performance.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

the 111 project

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3