Bone Milling: On Monitoring Cutting State and Force Using Sound Signals

Author:

Ying Zhenzhi,Shu LimingORCID,Sugita Naohiko

Abstract

AbstractEfficient monitoring of bone milling conditions in orthopedic and neurosurgical surgery can prevent tissue, bone, and tool damage, and reduce surgery time. Current researches are mainly focused on recognizing the cutting state using force signal. However, the force signal during the milling process is difficult and expensive to acquire. In this study, a neural network-based method is proposed to recognize the cutting state and force during the bone milling process using sound signals. Numerical modeling of the cutting force is performed to capture the relationship between the cutting force and the depth of cut in the bone milling process. The force model is used to calibrate the training data to improve the recognition accuracy. Wavelet package transform is used for signal processing to understand bone-cutting phenomena using sound signals. The proposed system succeeds to monitor the bone milling process to reduce the surgical risk. Experiments on standard bone specimens and vertebrae also indicate that the proposed approach has considerable potential for use in computer-assisted and robot-assisted bone-cutting systems used in various types of surgery.

Funder

State Key Lab of Digital Manufacturing Equipment and Technology

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3