Achieving High Strength-plasticity of Nanoscale Lamellar Grain Extracted from Gradient Lamellar Nickel

Author:

Wang Zimeng,Jia YunfeiORCID,Zhang Yong,Tang Pei,Zhang Xiancheng,Tu Shantung

Abstract

AbstractTraditional metallic materials usually face a dilemma between high strength and poor strain hardening capacity. However, heterogeneous structured metallic materials have been found to obviously overcome the trade-off. Herein, gradient lamellar structure was fabricated through ultrasound-aided deep rolling technique in pure Ni with high stacking fault energy after heat treatment. The gradient lamellar Ni was successively divided into the four regions. In-situ micropillar compression tests were conducted in different regions to reveal the corresponding microscopic mechanical properties. Microscopic characterization techniques were performed to explore underlying deformation mechanisms and the effects of microstructural parameters on deformation behaviors. This work demonstrates that the micropillar with near nanoscale lamellar thickness possesses excellent strength and plasticity. On one hand, the reason for high strength of near nanoscale micropillar is that the strength of micropillar increases with the decrease of lamellar thickness according to the Hall-Petch effect. On the other hand, numerous lamellar grain boundaries perpendicular to the loading direction is found to hinder the motion of slip bands, resulting in great strain hardening capacity in the near nanoscale lamellar micropillar.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Innovation Program of Shanghai Municipal Education Commission

Shanghai Rising-Star Program

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3