Abstract
AbstractThe torque–angle characteristics of electric–mechanical converters are important determinants of the quality of electrohydraulic proportional control systems. It is far more difficult for a rotary electric–mechanical converter (REMC) to obtain flat torque–angle characteristics than traditional proportional solenoid, greatly influencing the promotion and application of rotary valves for electrohydraulic proportional control systems. A simple and feasible regulation method for the torque–angle characteristics of REMCs based on a hybrid air gap is proposed. The regulation is performed by paralleling an additional axial air gap with the original radial air gap to obtain a flat torque–angle characteristic and increase output torque. For comparison, prototypes of REMCs based on hybrid and radial air gaps were manufactured, and a special test rig was built. The torque–angle characteristics under different excitation currents and step responses were studied by magnetic circuit analysis, finite element simulation, and experimental research. The experimental results were consistent with the theoretical analysis. It was shown that REMCs based on a hybrid air gap can obtain a flat torque–angle characteristic with further optimizing of key structural parameters and also increase output torque. This regulation method provides a new approach for the design of proportional rotary electromechanical converters.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference32 articles.
1. P Tamburrano, A R Plummer, E Distaso, et al. A review of electro-hydraulic servovalve research and development. International Journal of Fluid Power, 2019, 20(1): 53-98.
2. P Tamburrano, A R Plummer, E Distaso. A review of direct drive proportional electrohydraulic spool valves: industrial state-of-the-art and research advancements. Journal of Dynamic Systems, Measurement, and Control, 2018, 141(2): 020801.
3. R Amirante, E Distaso, P Tamburrano. Sliding spool design for reducing the actuation forces in direct operated proportional directional valves: experimental validation. Energy Conversion and Management, 2016, 119: 399-410.
4. H Yan, Y K Ren, L Yao, et al. Analysis of the internal characteristics of a deflector jet servo valve. Chinese Journal of Mechanical Engineering, 2019, 32:31, https://doi.org/10.1186/s10033-019-0345-7.
5. H Peng, J Z Wang, W Shen Wei, et al. Double fuzzy control with compensating factor for electronic-hydraulic servo valve-controlled system. Journal of Mechanical Engineering, 2017, 53(24): 184-192. (in Chinese)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献