Prediction of Grinding Force by an Electroplated Grinding Wheel with Orderly-Micro-Grooves

Author:

Mao Cong,Wang Jiali,Zhang Mingjun,Wang Xincheng,Luo Yuanqiang,Tang Weidong,Tang Kun,Bi Zhuming,Hu Yongle,Lin Zhenheng

Abstract

AbstractThe ability to predict a grinding force is important to control, monitor, and optimize the grinding process. Few theoretical models were developed to predict grinding forces when a structured wheel was used in a grinding process. This paper aimed to establish a single-grit cutting force model to predict the ploughing, friction and cutting forces in a grinding process. It took into the consideration of actual topography of the grinding wheel, and a theoretical grinding force model for grinding hardened AISI 52100 by the wheel with orderly-micro-grooves was proposed. The model was innovative in the sense that it represented the random thickness of undeformed chips by a probabilistic expression, and it reflected the microstructure characteristics of the structured wheel explicitly. Note that the microstructure depended on the randomness of the protruding heights and distribution density of the grits over the wheel. The proposed force prediction model was validated by surface grinding experiments, and the results showed (1) a good agreement of the predicted and measured forces and (2) a good agreement of the changes of the grinding forces along with the changes of grinding parameters in the prediction model and experiments. This research proposed a theoretical grinding force model of an electroplated grinding wheel with orderly-micro-grooves which is accurate, reliable and effective in predicting grinding forces.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Hunan Province of China

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3