3D Cohesive Finite Element Minimum Invasive Surgery Simulation Based on Kelvin-Voigt Model

Author:

Jiang YonghangORCID,Song Qinghua,Luo Xichun

Abstract

AbstractMinimally invasive surgery is an important technique used for cytopathological examination. Recently, multiple studies have been conducted on a three-dimensional (3D) puncture simulation model as it can reveal the internal deformation state of the tissue at the micro level. In this study, a viscoelastic constitutive equation suitable for muscle tissue was derived. Additionally, a method was developed to define the fracture characteristics of muscle tissue material during the simulation process. The fracture of the muscle tissue in contact with the puncture needle was simulated using the cohesive zone model and a 3D puncture finite element model was established to analyze the deformation of the muscle tissue. The stress nephogram and reaction force under different parameters were compared and analyzed to study the deformation of the biological soft tissue and guide the actual operation process and reduce pain.

Funder

Natural Science Foundation of Shandong Province

Chinese Government Scholarship

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3