Vibration Reduction Performance of Damping-Enhanced Water-Lubricated Bearing Using Fluid-Saturated Perforated Slabs

Author:

Jin YongORCID,Lu Jianjun,Ouyang Wu,Liu Zhenglin,Lao Kunsheng

Abstract

AbstractAs the first link element for the transmission of shaft vibration to the pedestal and even to the hull, water-lubricated bearing plays a key role in suppressing vibration. Although the porous structure is considered as one of the main methods for improving the wideband vibration and noise reduction performance of materials in many industrial fields, the studies in the field of water-lubricated bearing remain insufficient. To enhance vibration reduction performance, a fluid-saturated perforated slab is designed in this study, and via the establishment of a fluid-solid coupled vibration model, the influence law and impact levels were analyzed and verified by simulation and experiments. The results obtained verified that the total vibration amplitude of damping-enhanced stern bearing in the vertical direction was smaller than that of the normal stern bearing, and the reduction amplitude of the characteristic frequency agreed with the optimal value at approximately 0.1 of the volume fraction of the liquid phase when the solid-fluid phase was rubber–water. Additionally, the increase in fluid fraction did not enhance the damping effect, instead, it unexpectedly reduced the natural frequency of the raw material significantly. This research indicates that the design of the fluid-saturated perforated slab is effective in reducing the transmission of the vibration amplitude from the shaft, and presents the best volume fraction of the liquid phase.

Funder

National Natural Science Foundation of China

Key Laboratory of High Performance Ship Technology Opening Foundation

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3