Three-dimensional Modeling and Simulation of Muscle Tissue Puncture Process

Author:

Lv Zongkai,Song QinghuaORCID,Gao Fan,Liu Zhanqiang,Wan Yi,Jiang Yonghang

Abstract

AbstractNeedle biopsy is an essential part of modern clinical medicine. The puncture accuracy and sampling success rate of puncture surgery can be effectively improved through virtual surgery. There are few three-dimensional puncture (3D) models, which have little significance for surgical guidance under complicated conditions and restrict the development of virtual surgery. In this paper, a 3D simulation of the muscle tissue puncture process is studied. Firstly, the mechanical properties of muscle tissue are measured. The Mooney-Rivlin (M-R) model is selected by considering the fitting accuracy and calculation speed. Subsequently, an accurate 3D dynamic puncture model is established. The failure criterion is used to define the breaking characteristics of the muscle, and the bilinear cohesion model defines the breaking process. Experiments with different puncture speeds are carried out through the built in vitro puncture platform. The experimental results are compared with the simulation results. The experimental and simulated reaction force curves are highly consistent, which verifies the accuracy of the model. Finally, the model under different parameters is studied. The simulation results of varying puncture depths and puncture speeds are analyzed. The 3D puncture model can provide more accurate model support for virtual surgery and help improve the success rate of puncture surgery.

Funder

Natural Science Foundation of Shandong Province

The interdisciplinary research project of Shandong University

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3