A Discrete Multi-Objective Artificial Bee Colony Algorithm for a Real-World Electronic Device Testing Machine Allocation Problem

Author:

Xie Jin,Li Xinyu,Gao LiangORCID

Abstract

AbstractWith the continuous development of science and technology, electronic devices have begun to enter all aspects of human life, becoming increasingly closely related to human life. Users have higher quality requirements for electronic devices. Electronic device testing has gradually become an irreplaceable engineering process in modern manufacturing enterprises to guarantee the quality of products while preventing inferior products from entering the market. Considering the large output of electronic devices, improving the testing efficiency while reducing the testing cost has become an urgent problem to be solved. This study investigates the electronic device testing machine allocation problem (EDTMAP), aiming to improve the production of electronic devices and reduce the scheduling distance among testing machines through reasonable machine allocation. First, a mathematical model was formulated for the EDTMAP to maximize both production and the scheduling distance among testing machines. Second, we developed a discrete multi-objective artificial bee colony (DMOABC) algorithm to solve EDTMAP. A crossover operator and local search operator were designed to improve the exploration and exploitation of the algorithm, respectively. Numerical experiments were conducted to evaluate the performance of the proposed algorithm. The experimental results demonstrate the superiority of the proposed algorithm compared with the non-dominated sorting genetic algorithm II (NSGA-II) and strength Pareto evolutionary algorithm 2 (SPEA2). Finally, the mathematical model and DMOABC algorithm were applied to a real-world factory that tests radio-frequency modules. The results verify that our method can significantly improve production and reduce the scheduling distance among testing machines.

Funder

National Natural Science Foundation of China

Innovative Research Group Project of the National Natural Science Foundation of China

Huazhong University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3