Theoretical Model and Experimental Research on Friction and Torque Characteristics of Hydro-viscous Drive in Mixed Friction Stage

Author:

Cui HongweiORCID,Wang Qiliang,Lian Zisheng,Li Long

Abstract

Abstract The hydro-viscous drive (HVD) has been widely used in fan transmission in vehicles, fans, and scraper conveyors for step-less speed regulation or soft starting. In the mixed friction stage, the contact, friction, and torque characteristics of friction pairs are very complex and change at any time. The characteristics of the frictional and hydrodynamic lubrication states were studied in order to calculate and predict the friction and torque characteristics of the friction pairs in the mixed friction stage. The fluid torque was calculated by applying the average shear stress model and the load-carrying capacity of asperity was determined on the basis of the fractal contact theory. In addition, the contact friction coefficient of the friction pairs was taken into consideration and measured by using the MM1000-III friction and wear testing machine. The asperity friction torque and total torque in the mixed friction stage were obtained and finally, the test rig for the torque characteristics was set up. The results show that the contribution to the total torque is shared by the oil film and the asperity friction. The friction coefficient decreases sharply at first and then increases with a change in the relative rotational speed, following the Stribeck curve closely, and the contact frictional coefficient slowly decreases with increase in the pressure between the friction pairs. The torque between the friction pairs is provided by the asperity friction, and the torque due to the oil film reduces to zero. When the thickness of the oil film is small, a major contribution to the total torque is due to the asperity friction. The total torque also increases with the decrease in the film thickness ratio. Therefore, by theoretical analysis and experimental verification, the torque of the friction pairs in the mixed friction stage can be accurately calculated using the average shear stress model and asperity friction torque model.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3