Abstract
AbstractThe footpad structure of a deep space exploration lander is a critical system that makes the initial contact with the ground, and thereby plays a crucial role in determining the stability and energy absorption characteristics during the impact process. The conventional footpad is typically designed with an aluminum honeycomb structure that dissipates energy through plastic deformation. Nevertheless, its effectiveness in providing cushioning and energy absorption becomes significantly compromised when the structure is crushed, rendering it unusable for reusable landers in the future. This study presents a methodology for designing and evaluating structural energy absorption systems incorporating recoverable strain constraints of shape memory alloys (SMA). The topological configuration of the energy absorbing structure is derived using an equivalent static load method (ESL), and three lightweight footpad designs featuring honeycomb-like Ni-Ti shape memory alloys structures and having variable stiffness skins are proposed. To verify the accuracy of the numerical modelling, a honeycomb-like structure subjected to compression load is modeled and then compared with experimental results. Moreover, the influence of the configurations and thickness distribution of the proposed structures on their energy absorption performance is comprehensively evaluated using finite element simulations. The results demonstrate that the proposed design approach effectively regulates the strain threshold to maintain the SMA within the constraint of maximum recoverable strain, resulting in a structural energy absorption capacity of 362 J/kg with a crushing force efficiency greater than 63%.
Funder
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference46 articles.
1. D C Arney, C A Jones, J Klovstad, et al. Sustaining human presence on mars using ISRU and a reusable lander. AIAA Space 2015 Conference and Exposition, 2015: 4479.
2. B Robertson, E M Ramos, M J Diaz, et al. A conceptual design study for an unmanned, reusable cargo lunar lander. International Astronautical Congress (IAC), 2019: IAC-19-D2.4.10.
3. D Carabellese, D Barbero, P Pino, et al. Preliminary design of a reusable lunar lander/ascender for on-orbit refueling. AIAA Propulsion and Energy 2020 Forum, 2020: 3531.
4. B Huang, Z Jiang, P Lin, et al. Research on impact process of lander footpad against simulant lunar soils. Shock and Vibration, 2015: 658386.
5. C Wang, H Nie, J Chen, et al. The design and dynamic analysis of a lunar lander with semi-active control. Acta Astronautica, 2019, 157: 145-156.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献