Unstructured Road Extraction in UAV Images based on Lightweight Model

Author:

Zhang Di,An Qichao,Feng Xiaoxue,Liu Ronghua,Han Jun,Pan Feng

Abstract

AbstractThere is no unified planning standard for unstructured roads, and the morphological structures of these roads are complex and varied. It is important to maintain a balance between accuracy and speed for unstructured road extraction models. Unstructured road extraction algorithms based on deep learning have problems such as high model complexity, high computational cost, and the inability to adapt to current edge computing devices. Therefore, it is best to use lightweight network models. Considering the need for lightweight models and the characteristics of unstructured roads with different pattern shapes, such as blocks and strips, a TMB (Triple Multi-Block) feature extraction module is proposed, and the overall structure of the TMBNet network is described. The TMB module was compared with SS-nbt, Non-bottleneck-1D, and other modules via experiments. The feasibility and effectiveness of the TMB module design were proven through experiments and visualizations. The comparison experiment, using multiple convolution kernel categories, proved that the TMB module can improve the segmentation accuracy of the network. The comparison with different semantic segmentation networks demonstrates that the TMBNet network has advantages in terms of unstructured road extraction.

Funder

National Natural Science Foundation of China

The Technical Field Foundation of the National Defense Science and Technology 173 Program

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3