Characteristics of Oscillation in Cavity of Helmholtz Nozzle Generating Self-excited Pulsed Waterjet

Author:

Yuan Miao,Li Deng,Kang Yong,Shi Hanqing,Pan Haizeng

Abstract

AbstractCavity flow oscillations in the axisymmetric cavity are critical to the operating efficiency of self-excited pulsed waterjets, which are widely employed in many practical applications. In this study, the behaviors of a turbulent flow in axisymmetric cavities causing cavity flow oscillations are investigated based on wall pressure characteristics. Experiments are performed using four Helmholtz nozzles with varying length-to-radius ratios at flow velocities of 20–80 m/s. Three orders of hydrodynamic modes in axisymmetric cavity are obtained through the spectral analysis of wall pressure. Based on the experimental results, the empirical coefficient of Rossiter’s formula is modified, and the values of the parameter phase lag and the ratio of convection velocity to free stream velocity are obtained as 0.061 and 0.511, respectively. In addition, the spectral peak with a relatively constant frequency shows that the flow-acoustic resonance is excited significantly. A modified model is introduced based on the fluidic networks to predict the lock-on frequency. The results obtained can provide a basis for the structural optimization of the nozzle to improve the performance of self-excited pulsed waterjets.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3