Design and Analysis of a Novel Shoulder Exoskeleton Based on a Parallel Mechanism

Author:

Niu Lianzheng,Guo Sheng,Song Majun,Wu Yifan,Qu Haibo

Abstract

AbstractPower-assisted upper-limb exoskeletons are primarily used to improve the handling efficiency and load capacity. However, kinematic mismatch between the kinematics and biological joints is a major problem in most existing exoskeletons, because it reduces the boosting effect and causes pain and long-term joint damage in humans. In this study, a shoulder augmentation exoskeleton was designed based on a parallel mechanism that solves the shoulder dislocation problem using the upper arm as a passive limb. Consequently, the human–machine synergy and wearability of the exoskeleton system were improved without increasing the volume and weight of the system. A parallel mechanism was used as the structural body of the shoulder joint exoskeleton, and its workspace, dexterity, and stiffness were analyzed. Additionally, an ergonomic model was developed using the principle of virtual work, and a case analysis was performed considering the lifting of heavy objects. The results show that the upper arm reduces the driving force requirement in coordinated motion, enhances the load capacity of the system, and achieves excellent assistance.

Funder

Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3