Development of Texture Mapping Approaches for Additively Manufacturable Surfaces

Author:

Verma BhupeshORCID,Zarei Omid,Zhang Song,Schleifenbaum Johannes Henrich

Abstract

AbstractAdditive manufacturing (AM) technologies have been recognized for their capability to build complex components and hence have offered more freedom to designers for a long time. The ability to directly use a computer-aided design (CAD) model has allowed for fabricating and realizing complicated components, monolithic design, reducing the number of components in an assembly, decreasing time to market, and adding performance or comfort-enhancing functionalities. One of the features that can be introduced for boosting a component functionality using AM is the inclusion of surface texture on a given component. This inclusion is usually a difficult task as creating a CAD model resolving fine details of a given texture is difficult even using commercial software packages. This paper develops a methodology to include texture directly on the CAD model of a target surface using a patch-based sampling texture synthesis algorithm, which can be manufactured using AM. Input for the texture generation algorithm can be either a physical sample or an image with heightmap information. The heightmap information from a physical sample can be obtained by 3D scanning the sample and using the information from the acquired point cloud. After obtaining the required inputs, the patches are sampled for texture generation according to non-parametric estimation of the local conditional Markov random field (MRF) density function, which helps avoid mismatched features across the patch boundaries. While generating the texture, a design constraint to ensure AM producibility is considered, which is essential when manufacturing a component using, e.g., Fused Deposition Melting (FDM) or Laser Powder Bed Fusion (LPBF). The generated texture is then mapped onto the surface using the developed distance and angle preserving mapping algorithms. The implemented algorithms can be used to map the generated texture onto a mathematically defined surface. This paper maps the textures onto flat, curved, and sinusoidal surfaces for illustration. After the texture mapping, a stereolithography (STL) model is generated with the desired texture on the target surface. The generated STL model is printed using FDM technology as a final step.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference32 articles.

1. A Curodeau, E Sachs, S Caldarise. Design and fabrication of cast orthopedic implants with freeform surface textures from 3‐D printed ceramic shell. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2000, 53: 525–535.

2. D Attinger, C Frankiewicz, A R Betz, et al. Surface engineering for phase change heat transfer: A review. MRS Energy & Sustainability, 2014: 4.

3. N Pietroni, P Cignoni, M Otaduy, et al. Solid-texture synthesis: a survey. IEEE Computer Graphics and Applications, 2010, 30: 74–89.

4. C C Chen. Texture synthesis: A review and experiments. Journal of Information Science and Engineering, 2003, 19: 371–380.

5. Y Fischer. Fractal image compression: theory and application. Springer Science & Business media, 2012.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3