An Experimental Validation Study on Ferrofluid Evaporation

Author:

Yu Wenjuan,Li Decai,Niu Sifang

Abstract

AbstractThe current research on the evaporation of ferrofluids mainly focuses on the characterization of ultra-low vapor pressure ferrofluids in vacuum and the theoretical analysis of the evaporation process. Few studies have focused on the experimental validation of the proposed evaporation rate equations and on the comparison of the differences in ferrofluid evaporation. In this study, based on the Bolotov’s model, an evaporation rate equation is deduced from the experimental model. The experimental study included a comparison of the evaporation, magnetic particle volume fraction, temperature, height of the fluid surface from the outlet, and magnetic field of a kerosene-based ferrofluid and its base carrier liquid. The prepared sample was evaporated in a test tube, and the evaporation rate was calculated by measuring the weight loss of the sample. The experimental results show that the evaporation rate of the base carrier liquid is higher than that of the ferrofluid. The smaller the volume fraction of the magnetic particles, the greater the evaporation rate. The magnetic particles play a key role in preventing evaporation of the base liquid. The higher the temperature, the smaller the deviation of the evaporation rate from the predicted value. The evaporation rates obtained by the two control groups at the height of the fluid surface from the outlet were lower than the predict value. The magnetic field had a certain promotional effect on the evaporation of the ferrofluid. The experimental results were consistent with the results obtained using Bolotov’s model. This research validates Bolotov’s model and shows that the model is somewhat biased but still responds well to different variables.

Funder

Beijing Natural Science Foundation of China

national natural science foundation of china

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference31 articles.

1. D C Li. Theory and application of magnetic fluid seal. Beijing: Science Press, 2010. (in chinese)

2. X Liu, D C Li. Modeling the effect of surfactant (linoleic acid/oleic acid/stearic acid) on the stability of kerosene-based magnetic fluid with Fe3O4. Functional Materials Letters, 2021, 14(6): 1-12.

3. S D Han, H C Cui, Z L Zhang, et al. Preparation method of magnetic fluid and introduction of several special magnetic fluid. Functional Materials, 2021, 52(10): 10061-10068.(in chinese)

4. C Q Chi. Physics basis and application of ferrofluid. Beijing: Beihang University Press, 2011. (in chinese)

5. P S Stephen. Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles: US, 3215572A. 1965-11-02.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3