Regression Method for Rail Fastener Tightness Based on Center-Line Projection Distance Feature and Neural Network

Author:

Wang Yuanhang,Liu DuxinORCID,Guo Sheng,Wu Yifan,Liu Jing,Li Wei,Wang Hongjie

Abstract

AbstractIn the railway system, fasteners have the functions of damping, maintaining the track distance, and adjusting the track level. Therefore, routine maintenance and inspection of fasteners are important to ensure the safe operation of track lines. Currently, assessment methods for fastener tightness include manual observation, acoustic wave detection, and image detection. There are limitations such as low accuracy and efficiency, easy interference and misjudgment, and a lack of accurate, stable, and fast detection methods. Aiming at the small deformation characteristics and large elastic change of fasteners from full loosening to full tightening, this study proposes high-precision surface-structured light technology for fastener detection and fastener deformation feature extraction based on the center-line projection distance and a fastener tightness regression method based on neural networks. First, the method uses a 3D camera to obtain a fastener point cloud and then segments the elastic rod area based on the iterative closest point algorithm registration. Principal component analysis is used to calculate the normal vector of the segmented elastic rod surface and extract the point on the centerline of the elastic rod. The point is projected onto the upper surface of the bolt to calculate the projection distance. Subsequently, the mapping relationship between the projection distance sequence and fastener tightness is established, and the influence of each parameter on the fastener tightness prediction is analyzed. Finally, by setting up a fastener detection scene in the track experimental base, collecting data, and completing the algorithm verification, the results showed that the deviation between the fastener tightness regression value obtained after the algorithm processing and the actual measured value RMSE was 0.2196 mm, which significantly improved the effect compared with other tightness detection methods, and realized an effective fastener tightness regression.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Reference21 articles.

1. Liang Gao. Track engineering. Beijing: China Railway Publishing House, 2018.

2. Le Wang, Qian Zhou, Yue Fang, et al. Detection method for fastening state of rail fasteners based on linear structured light. Progress in Laser and Optoelectronics, 2021, 58(16): 399-407

3. Q Mao, C Hao, Q Hu, et al. A rigorous fastener inspection approach for high-speed railway from structured light sensors. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 143(Sep.): 249-267.

4. Huogen Fang. STCK-III fastener pressure measuring instrument. Shanghai Railway Science and Technology, 2001(1): 47.

5. Xiukun Wei, Da Suo, Dehua Wei, et al. Overview of the application of machine vision in the state detection of rail transit system. Control and Decision, 2021, 36(2): 257-282.(in Chinese)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3