Experimental Investigation and Optimization Design of Multi-Support Pipeline System

Author:

Zhang Xiantao,Liu Wei,Zhang Yamei,Zhao Yujie

Abstract

AbstractThe design of aircraft hydraulic pipeline system is limited by many factors, such as the integrity of aviation structure or narrow installation space, so the limited clamp support position should be considered. This paper studied the frequency adjustment and dynamic responses reduction of the multi-support pipeline system through experiment and numerical simulation. To avoid the resonance of pipeline system, we proposed two different optimization programs, one was to avoid aero-engine working range, and another was to avoid aircraft hydraulic pump pulsation range. An optimization method was introduced in this paper to obtain the optimal clamp position. The experiments were introduced to validate the optimization results, and the theoretical optimization results can agree well with the test. With regard to avoiding the aero-engine vibration frequency, the test results revealed that the first natural frequency was far from the aero-engine vibration frequency. And the dynamic frequency sweep results showed that no resonance occurred on the pipeline in the engine vibration frequency range after optimization. Additionally, with regard to avoiding the pump vibration frequency, the test results revealed that natural frequencies have been adjusted and far from the pump vibration frequency. And the dynamic frequency sweep results showed that pipeline under optimal clamp position cannot lead to resonance. The sensitivity analysis results revealed the changing relationships between different clamp position and natural frequency. This study can provide helpful guidance on the analysis and design of practical aircraft pipeline.

Funder

the National Natural Science Foundation of China

Aviation Power Foundation

the Foundation of Innovation and Creation for Graduate Students in Northwestern Ploytechnical University

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3